
Rdb Continuous LogMiner
and the JCC LogMiner

Loader
A presentation of MnSCU’s use of

this technology

Topics

• Overview of MnSCU
• Logmining Uses
• Loading Data
• Logminer Configuration Info

• Bonus: Global Buffer implementation and
resulting performance improvements

Overview of MnSCU

Overview of MnSCU

• Minnesota State College and University System
– Comprised of 37 Institutions

• State Universities, Community and Technical Colleges
• 53 Campuses in 46 Communities
• Over 16,000 faculty and staff
• More than 3,600 degree programs

– Serves over 250,000 Students per year
• Additional 130,000 Students in non-credit courses

I S R S

• MnSCU’s Primary Application
– ISRS: Integrated State-wide Record System

• Written in Uniface (4GL), Cobol, C, JAVA
– 2,000+ 3GL programs; 2,200+ 4GL forms
– Over 4,000,000 lines of code

MnSCU’s Rdb Topology
North Region

South Region

9 Institution Dbs

1 Regional Db

8 Institution Dbs

Metro Region

1 Regional Db

13 Institution Dbs

1 Regional Db

Central Region

7 Institution Dbs

1 Regional Db

1 Central Db

Development

20+ Dvlp/QC/Train
Dbs

•Each Institution Db has 1283 tables
•Over 1,240,000,000 rows Total
•Over 1 Terra-byte total disk space
•Over 20% Annual Data Growth

Production Users

• Each regional center supports:
– Between 500 and 1,000 on-line users (during

the day)
– Numerous batch reporting and update jobs

daily and over-night
– 135,000+ Web transactions each day 24x7

• Registrations, Grades, Charges (fees),
On-line Payments, Open Sections Inquiry, etc…

• 13,331,421 Registrations averaging 0.12 seconds
• 36,116,726 Others averaging 0.34 seconds

Production System
GS-1280 Physical Configuration:
• 4 hard partitions (one for each region), each configured with 2 sub-partitions:

– Production sub-partition: 12 CPU, 96 GB memory
– Replicated sub-partition: 4 CPU, 32 GB memory

• We are using VMS Galaxy to be able to move CPUs between soft partitions if
necessary. A total of 8 instances of VMS are running in the GS1280.

• We have disk space on a Storage Area Network (SAN). Distributed as follows:

EVA5000 (GB) EVA8000 (GB) Total (GB)

METRO PROD 1,035

REPL 352

CNTRL PROD 891

REPL 255

SOUTH PROD 900

REPL 331

NORTH PROD 876

REPL 255

VMS TOTAL 938 3,957 4,895

LogMining

LogMining Modes

• Static
– The Rdb LogMiner runs, by default, as a

stand-alone process against backup copies of
the source database AIJ files

• Continuous
– The Rdb LogMiner can run against live

database AIJs to produce a continuous output
stream that captures transactions when they
are committed

LogMining Uses

• Hot Standby (replication) replacement
• Mining a single Db to multiple targets
• Mining to Non-Rdb Target(s)

– XML, File, API, Tuxedo, Orrible
• Mining multiple Dbs to a single target
• Minimizing production Db maintenance

downtime

LogMining at MnSCU
The combination of the Rdb Continuous LogMiner

and the JCC LogMiner Loader allow us to:
• Distribute centrally controlled data to multiple

local databases
• Replicate production databases into multiple

partitioned query databases
• Roll up multiple production databases into a

single target
• Replicate production data into non-Rdb

databases to support development of database-
independent application

Source Db Preparation
• The LogMiner input to the Loader is created when the

source database is enabled for LogMining
• This is accomplished with an RMU command. The

optional parameter ‘continuous’ is used to specify
continuous operation:
$ rmu/set logminer/enable[/continuous] <database name>
$ rmu/backup/after/quiet <database name> ...

• Many of the procedures included with the Loader kit rely
on the procedure vms_functions.sql having been applied
to the source database:
SQL> attach ‘filename <source database>’;
SQL> @jcc_tool_sql:vms_functions.sql
SQL> commit;

MnSCU’s Oracle Topology

WHSE Instance

Various
Warehouse
Schemas

APPL Instance

37 Institutions
combined in 1 schema
(448 tables each)

Other Schemas in
support of specific
applications

1 VAL Schema
(141 Codes Tables)

REPL Instance

37 Institutions
combined in 1 schema
(448 tables each)

1 VAL Schema
(141 Codes Tables)

VAL Tables
1 central
copy

REPL

APPL

The Big Picture
WAREHOUSE

CC_SUMMARY
Combined (all 37)

Other Data
Warehouse
Structures

Ad-Hoc Users
Read-Only

CLM w/PK
37 sessions
each

CLM w/PK
And FilterMaps
DBK+RC_ID
37 sessions

CLM w/PK
And FilterMaps
DBK+RC_ID
37 sessions

37 Production
Rdb DBs

NWR db

CENTRALDB

NTC

FFC

TRF

BTC

36 Standby Rdb
Reporting Dbs

HS
36 Dbs

REGIONALDB

CLM w/DBK and Filter
4 sessions

REGIONALDB

REGIONALDB

REGIONALDB
CLM w/PK
4 sessions

ISRS Tables
Combined
(all 37)

ISRS Tables
Combined
(all 37)

VAL Tables
1 central
copy

Applications

MNSCUALL
Combined (all 37)

CLM w/PK
2 sessions each

Tables for new
Applications

Warehouse
Users

Mining Single Db to
Multiple Targets

• We’ve begun combining
institutions in some of our
production databases

• Introduced a new column called
RC_ID to over 700 tables for row-
level security

37 Production
Rdb DBs

NWR db
NTC

FFC

TRF

BTC

• Row security provided by views
• However, the reporting databases still needed to

be separate so users wouldn’t have to change
hundreds of existing queries to include RC_ID

Keyword: <filter>

LML Tip

Mining to Multiple Targets

0142
0263
0215
0303

0142

0263

0215

0303

Production Db
Logminer w/ filtering for RC_ID=‘0142’

Reporting Dbs

Logminer w/ filtering for RC_ID=‘0263’

Logminer w/ filtering for RC_ID=‘0215’

Logminer w/ filtering for RC_ID=‘0303’

NWR

Keyword: filter~include~ST_APP_ADDR~rc_id='0303'

LML Tip

Replication Replacement
• Historically we’ve used Rdb’s Hot Standby

feature to maintain reporting Dbs for users
(ODBC and some batch reports)

• However, of the 1200+ tables in
production ISRS Dbs, we found users only
use 260 tables for reporting from the
standby Dbs

37 Production
Rdb DBs

NWR db
NTC

FFC

TRF

BTC

• Batch reports were found to use another 222 tables
• With Logminer, we can maintain just this subset of tables

(482) for reporting purposes

Logical: $ define[/system] JCC_ADD_CLM_SHARED_READ "T"

LML Tip

Combining Data

• Since we have 37 separate institutional
databases, getting combined data for
system-wide reporting was difficult

• With Logminer we can combine data from
each of the production ISRS databases
into one target, in this case Oracle

• Need PK defined

CLM w/FilterMaps
DBK+RC_ID
37 sessions

37
Production
Rdb DBs

NWR
db

ISRS

ISRS Tables
Combined
(all 37)

Non-Rdb Target

• With Logminer we can mine tables from
each of our Production ISRS databases
into Oracle

• This allows us to test our application
against a different DBMS
– Structure and content same as production

• Data logically separated (with VPD) for
each institution’s use

CLM w/FilterMaps
DBK+RC_ID
37 sessions

37
Production
Rdb DBs

NWR
db

ISRS

ISRS Tables
Combined
(all 37)

Target Db Preparation
• Besides the task of creating the target db and

tables itself, there are many ‘details’ to attend to
depending upon target db type

• For Oracle targets, Rdb field and table name
lengths (and names) can be an issue (and target
tablespaces too)

• One thing in common: the HighWater table
– Used by the loader to keep track of what has been

processed
– AERCP stored here: looks like

1-28-1941-9959-8798096-8798096
aij# aij-blk tsn# tsn#

CHAR vs VARCHAR
• Target data in Oracle can be CHAR or VARCHAR
• CHAR data in target always SPACE filled

– TRIM on converts values of all SPACES to NULL
– If PK contains ‘short’ values, logminer will not find match, so will attempt to insert

• Insert will fail due to dups
• VARCHAR data in target

– TRIM on removes tailing SPACES, all SPACES become NULL
• If source data allows SPACE as a valid value, queries in target have to change to allow

for NULL (if TRIM is on)
– TRIM off leaves trailing SPACES or all SPACES intact

• Joins can become problematic
• Logminer may not find match depending on # of trailing spaces in short key

• The Logminer Loader currently uses VARCHAR data so comparing to
CHAR target data can be problematic

– The Loader might change in the future to be based on target data type rather
than assuming VARCHAR

We found ‘best practice’ seemed to be VARCHAR with TRIM on

LML Tip

Minimizing Production
Downtime

• Basic Steps:
– Do an AIJ backup
– Create copy of production Db
– Perform restructuring / maintenance / etc on Db copy

• This could take many hours

– Remove users from Production Db
– Apply AIJ transactions to Db copy using LogMiner

• This step requires minimal time

– Switch applications to use Db copy – This is now the
new production Db!

Loading Data

Loading Data
• 3 Methods to accomplish this:

– Direct Load (Oracle SQLLOADER)
• Could impose data restrictions by using views
• Can configure commit-interval
• Cannot load Blob data or Clob data > 4000 bytes

– LogMiner Pump
• Use a no-change update transaction on source
• Allows for data restrictions
• Commit-interval matches source transaction
• Consumes AIJ space

– JCC Data Pump
• Configurable to do parent/child tables, data restrictions, commit-

interval and delay-interval to minimize performance impact
• Consumes AIJ space
• Relies on JCC Logminer active session to move the data

Loading Data Example
• Loaded a table with 64,914 rows, 91 bytes each
• Used LogMiner to ‘pump’ the rows via a no-

change update from a single transaction
– This took about 8 minutes; 13,800 AIJ-blocks
– 1.2 million blocks of sortwork files
– LML used about 210,000 I/O

• Using the JCC Data Pump (commit interval 1000)
– Same AIJ and I/O usage / no sortwork files
– About 6.5 minutes to insert target data
– About 20% faster than single transaction
– Also more control and flexibility

Loading Data Example

• SQLLOADER
– Used RMU to create text .UNL file
– This took less than 30 seconds, no AIJ blocks,

20,454 blocks for .UNL file

– Obviously removing the sort and AIJ
utilization significantly speeds up the process

Loader Performance

• SCSU_REPISRS session (255 tables)
– From CLM log:

19-APR-2006 05:00:08.52 20386121 CLM SCSU_REPISR Total : 53426 records
written (50923 modify, 2503 delete)

– The 3 processes themselves:
• CTL: 1 min 22.5 CPU secs / 7331 Direct IO 1.8 mil buff
• CLM: 1 min 3.27 CPU secs / 123,637 Direct IO 94889 buff
• LML: 2 min 45.7 CPU secs / 125 Direct IO 2.2 mill buff

– After 23:48 hours of connect time (an entire day), this is
about 1.5 Direct IO per second average

Performance

• CSV and T4 stats
• Put example here…

Operations Heartbeat

• Without Heartbeat a session can become ‘stale’
• AIJ backups can be blocked

– Example: the last ‘logmined’ table updated was in
prior journal, aij-backup would be blocked

• With Heartbeat enabled this does not occur
– Side-affect is that ‘trailing’ messages are not

displayed with heartbeat enabled
– Only one session per database needs Heartbeat

Logical: $ define JCC_CLML_HEARTBEAT_ENABLE 1

LML Tip

config
• Configuration:

– PK mining
• Logminer config determines PK from:

PK defined on the table -OR-
The Unique index with fewest columns

• Except for tables with ALL or NO PK
– For those DBKey mining must be used

– Multi-source to single target
– Automate manual db.ini file changes
– Optional features employed:

• VIRTUALCOLUMN
• MAPTABLE / MAPKEY

– Allows for defining a PK other than the base table definition, or other target table layouts different from the source table
– Indicated by db.ini file keyword <nomaptable> (this seems counter-intuitive)
– Then MAPTABLE configuration overrides db.ini file config for table

– Example of mining to different target table layout with maptable:
• TABLE~ST_TERM_DATA~22~Replicate~Nomaptable
• MAPTABLE~ST_TERM_DATA~ST_TERM_DATA
• MAPCOLUMN~ST_TERM_DATA~INST_ID
• MAPCOLUMN~ST_TERM_DATA~CAMPUS_ID
• MAPCOLUMN~ST_TERM_DATA~TECH_ID
• MAPCOLUMN~ST_TERM_DATA~SSN
• MAPCOLUMN~ST_TERM_DATA~RECORD_TYPE
• MAPCOLUMN~ST_TERM_DATA~LAST_NAME
• MAPCOLUMN~ST_TERM_DATA~FIRST_NAME
• MAPCOLUMN~ST_TERM_DATA~BIRTH_DATE

DBK vs PK Mining

• For tables without a PK, DBkey can be used
– Some tables may be all PK or have no PK defined, for

them DBKey is the only option (adding surrogate key
or picking arbitrary PK could affect application)

• One drawback: data reloads or export/import
operations change all DBkey values
– Thus requiring reload of all target data dependant

upon DBKey

<virtual_column>

LML Tip

• VIRTUALCOLUMN
– Useful for hard-coding a value:

VIRTUALCOLUMN~CR_ISRS~JCCLML_CONSTANT,RC_ID~'0215‘

– Necessary for Originating-DBKey:
VIRTUALCOLUMN~CC_SUMMARY~ORIGINATING_DBKEY

Different Target Layouts

• Creating a PK on the target different from
the source

• Excluding columns from source table
• Useful for Combining data from multiple

sources
• Use MAPTABLE / MAPKEY feature of

Logminer-Loader to create a concatenated
PK in target db composed of DBK + some
other field

<nomaptable> <maptable> <mapkey>

LML Tip

LogMining Scope at
MnSCU

• Sessions with Oracle Targets:
– APPL: 448 tables from each of 37 source dbs to 1 Oracle

schema (16,576 tables)
• Allows us to work on converting our application to use Oracle without

impacting production or having to do a cold-switch
• From this Oracle data warehouse structures are built to provide value-added

reporting ‘data-marts’
– REPL: 448 tables from each of 37 source dbs to 1 Oracle

schema
• Allows us to shift our reporting focus to Oracle while continuing to base

production on Rdb
– VAL: 141 tables from 2 source dbs to 1 Oracle schema

• These sessions allow us to place validation data common to all institutions in
one schema

– CC_SUMMARY: 1 table from each of 37 source dbs
• Used for warehouse support

– MNSCUALL: 5 tables from each of 37 source dbs
• Used for warehouse support

LogMining Scope at
MnSCU

• Sessions with Rdb Targets:
– NWR: 482 tables from 1 source to 4 Rdb targets

• In these sessions we are separating data from a combined institutional
database into separate reporting databases for each institution

– CENTRLDB: 3 tables from 1 source db to 4 target Rdb dbs
• In this session we are taking centralized data and placing copies of

it on our regional servers (allows us to maintain these 3 tables
centrally without changing our application which reads the data
locally)

• Total of 17,202 tables being mined by 158
separate continuous LogMiner sessions!

Session Support
• To support so many sessions we’ve developed a naming convention

for sessions
• Includes a specific directory structure
• Built several tools to simplify the task of

creating/recreating/reloading tables
• Some of the tools are based on the naming convention
• Currently our tools are all DCL, but better implementations could be

made with 3GLs
• List tools? Create table script/load-data-script
• Example: load-oracle-data source-db-spec~table instance~user-pw

DBK/RCIDnnnn schema tablespace~index-tablespace work-
disk:[dir] debug
– Tablespace naming convention based on oracle schema-name (user)

• Use Rdb Metadata to define Oracle tables/indexes/PKs/etc

Config mgmt

• Integrated logminer configs with prod db
changes

• Volatile source environment – changes
need to be grouped/scheduled and
coordinated with logmining configs
– Adding/changing/removing columns
– Adding/removing constraints

Bonus: Global Buffers

• Despite great performance gains from Row
Cache over the past couple of years, we still
were anticipating issues for our fall busy period

• We turned on GB on many Dbs
– On our busiest server, we enabled it on all dbs
– On other servers, we have about 50% implementation

• Used to run with RDM$BIND_BUFFERS of 220
• Estimated GB at max number of users@200 ea

Global Buffers

• Prior to implementing GB, our busiest
server was running at a constant 6,000-
7,000 IO/sec

• Other servers were running around 3,000
but had spikes to 7,000 or more

• Global buffers both lowered overall IO, as
well as eliminated spikes

• Cost is in total Locks (Resources)
– Increase LOCKIDTBL and RESHASHTBL

Before GB

METE

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

28-Jul
1 w/Gb

2-Aug
1 w/Gb

3-Aug
1 w/Gb

10-11 IO
2-3 IO
10-11PRC
2-3 PRC

After GB

METE

-
1,000
2,000
3,000
4,000
5,000
6,000
7,000

28
-Ju

l
 1

 w
/G

b

3-
Au

g
 1

 w
/G

b

5-
Au

g
 7

 w
/G

b

9-
au

g

9 w

/gb

11
-a
ug

9
w/

gb

13
-a
ug

11

 w
/g
b

17
-a
ug

11

 w
/g
b

19
-a
ug

11

 w
/g
b

23
-a
ug

11

 w
/g
b

25
-a
ug

11

 w
/g
b

27
-a
ug

11

 w
/g
b

30
-a
ug

11

 w
/g
b

2-
se

p
 1

1 w
/g
b

7-
se

p
 1

1 w
/g
b

9-
se

p
 1

1 w
/g
b

13
-se

p
 1

1
w/

gb

15
-se

p
 1

1
w/

gb

17
-se

p
 1

1
w/

gb

21
-se

p
 1

1
w/

gb

23
-S

ep

27
-S

ep

29
-S

ep
1-
Oct

5-
Oct

7-
Oct

10-11 IO
2-3 IO
10-11 PRC
2-3 PRC

After Gb

MNSCU1

-

1,000

2,000

3,000

4,000

5,000

6,000

28
-Ju

l
 0

 w
/G

b

3-
Aug

 0
 w

/G
b

5-
Aug

 1
 w

/G
b

9-
au

g

 1
 w

/gb

11
-au

g
2 w

/gb

13
-au

g
4 w

/gb

17
-au

g
4 w

/gb

19
-au

g
4 w

/gb

23
-au

g
4 w

/gb

25
-au

g
4 w

/gb

27
-au

g
4 w

/gb

31
-au

g
4 w

/gb

2-
se

p
4 w

/gb

7-
se

p
4 w

/gb

9-
se

p
4 w

/gb

13
-se

p
 4

 w
/gb

15
-se

p
 4

 w
/gb

17
-se

p
 4

 w
/gb

21
-se

p
 4

 w
/gb

23
-S

ep

27
-S

ep

29
-S

ep
1-

Oct
5-

Oct
7-

Oct

10-11 IO
2-3 IO
10-11 PRC
2-3 PRC

Resources

CPU

• Since we are now using less IO, more
CPU is available

• Before:
SDA> lck show lck /rep=5/int=10
23-AUG-2004 14:28:48.80 Delta sec: 10.0 Ave Spin: 24005

Ave Req: 39875 Req/sec: 15656.9 Busy: 62.4%
23-AUG-2004 14:28:58.80 Delta sec: 10.0 Ave Spin: 19121

Ave Req: 30166 Req/sec: 20289.7 Busy: 61.2%

• After:
24-AUG-2004 11:44:01.90 Delta sec: 10.0 Ave Spin: 12846

Ave Req: 13439 Req/sec: 38043.3 Busy: 51.1%
24-AUG-2004 11:44:11.90 Delta sec: 10.0 Ave Spin: 16629

Ave Req: 15514 Req/sec: 31109.1 Busy: 48.3%

Lock Rates

• Reducing these numbers to Lock
Operations per 1% of CPU time yields:
– Before: 299
– After: 573

• Miles.Oustad@CSU.MNSCU.EDU
• (218) 755-4614

For More Information

mailto:Miles.Oustad@CSU.MNSCU.EDU�

Q U E S T I O N S

A N S W E R S
&

	Rdb Continuous LogMiner �and the JCC LogMiner Loader
	Topics
	Overview of MnSCU
	Overview of MnSCU
	I S R S
	MnSCU’s Rdb Topology
	Production Users
	Production System
	LogMining
	LogMining Modes
	LogMining Uses
	LogMining at MnSCU
	Source Db Preparation
	MnSCU’s Oracle Topology
	The Big Picture
	Mining Single Db to�Multiple Targets
	Mining to Multiple Targets
	Replication Replacement
	Combining Data
	Non-Rdb Target
	Target Db Preparation
	CHAR vs VARCHAR
	Minimizing Production Downtime
	Loading Data
	Loading Data
	Loading Data Example
	Loading Data Example
	Loader Performance
	Performance
	Operations Heartbeat
	config
	DBK vs PK Mining
	Slide Number 33
	Different Target Layouts
	LogMining Scope at MnSCU
	LogMining Scope at MnSCU
	Session Support
	Config mgmt
	Slide Number 39
	Slide Number 40
	Bonus: Global Buffers
	Global Buffers
	Before GB
	After GB
	After Gb
	Resources
	CPU
	Lock Rates
	For More Information
	Slide Number 50

