
“Unlocking” Oracle Developer “Unlocking” Oracle Developer
with Rdbwith Rdb

Jeffrey S. Haidet
Cheryl P. Jalbert

JCC Consulting, Inc. Granville OH 43023

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 2

AbstractAbstract
Oracle Forms was originally built to work natively with the Oracle database
server using the native Oracle Call Interface. It also talks to other
database servers via ODBC. When Rdb gained the OCI interface this gave Rdb
users the opportunity to build Oracle Developer applications using the more-
efficient OCI interface as well.

However, Rdb is definitively not Oracle(n). Accordingly, one must
significantly alter the design of Oracle Developer applications which would
interface with Rdb instead of traditional Oracle. Some areas where these
designs must be altered include:

● Default transactions

● Holdable cursors

● Controlling transactions within Developer

● Controlling transactions in a multi-form Developer application

● Automatic deadlock control

● Controlling stale read-only transactions

This presentation will include real world examples of how we address these
issues at JCC. This methodology includes a practical object-based model and
has been applied to applications involved with hundreds of forms without
editing hundreds of files!

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 3

Default TransactionsDefault Transactions

● Closest Rdb transaction state to the Oracle model is
‘set transaction read write isolation level read
committed’

● Read committed transactions still hold locks
● In a true application, inserts/updates and queries

must all be supported

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 4

Default TransactionsDefault Transactions

● Rdb automatically starts an implicit transaction if a
transaction has not been started
– Due to default transaction state, this is a Read Write

transaction

● Implications
– Locks can be held for long periods of time
– Read Write transactions opened automatically

● Unless user (or the application) does something, these
transaction can remain for long periods of time

● Is there a way around these issues?

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 5

RequirementsRequirements

● To take advantage of these recommendations, Quiet
Commit must be turned on
– Quiet Commit was added in Rdb V7.0, but wasn't

documented until the Rdb V7.0.2.1 release notes.
– Enable Quiet Commit in the SQL initialization script for the

service

SQL> commit;

%SQL-F-NO_TXNOUT, No transaction outstanding

SQL> rollback;

%SQL-F-NO_TXNOUT, No transaction outstanding

SQL>

SQL> set quiet commit ’on’;

SQL> commit;

SQL> rollback;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 6

Holdable CursorsHoldable Cursors

● This is the default cursor state when using OCI
● Holdable cursors keep cursors open across

transactions
– Open Cursor
– Fetch from cursor (fetches row 1)
– Rollback
– Fetch from cursor (fetches row 2)
– etc

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 7

Leveraging Developer BuiltLeveraging Developer Built--Ins to Ins to
Leverage RdbLeverage Rdb

● FORMS_DDL (Forms)
– Unrestricted Oracle built-in function that takes as a

parameter one string and sends this string into the database
to be compiled and executed

– Example
● Forms_ddl (‘my string to pass’);

● SRW.DO_SQL (Reports)
– Built in package procedure that is basically the Oracle

Reports equivalent to FORMS_DDL
– Example

● Srw.do_sql (‘my string to pass’);

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 8

FORMS_DDL and SRW.DO_SQL FORMS_DDL and SRW.DO_SQL
FailuresFailures

● What happens if the routines fail to execute the
statement successfully?
– Client-side exception FORM_SUCCESS set to ‘false’
– The exception must be handled by the application

Begin

forms_ddl (‘set transaction read only’);

if not(forms_success)

then

< Process exception here >

end if;

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 9

Controlling Transactions inside DeveloperControlling Transactions inside Developer

● Can the Rdb transaction model be controlled from
within Developer?
– Things to consider

● Implicit transactions
● Holdable cursors

● Default transaction state

● FORMS_DDL/SRW.DO_SQL
● “Stale” data

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 10

Toggling Transaction State Within Toggling Transaction State Within
a Form or Reporta Form or Report

● Leverage the Oracle built-ins SRW.DO_SQL and
FORMS_DDL to alter your current transaction state
– Example

Begin /* Forms example */
forms_ddl (‘rollback’);
forms_ddl (‘set transaction read only’);
<…>
forms_ddl (‘commit’);

End;
Begin /* Reports Example */

srw.do_sql (‘rollback’);
srw.do_sql (‘set transaction read only’);

<…>
srw.do_sql (‘commit’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 11

Implications Implications
on Transaction State Togglingon Transaction State Toggling

● If we programmatically change the transaction states
with FORMS_DDL or SRW.DO_SQL what
implications will this have on our application?
– Since we are using holdable cursors, nothing.
– Example:

Form Opens
Use FORMS_DDL/SRW.DO_SQL – ‘set transaction read only’
Query issued

Cursor Opened
Records Fetched (1 –20 returned to application)

Use FORMS_DDL/SRW.DO_SQL – ‘rollback’
Query Continued

Records Fetched (21 – n returned to application)
Etc.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 12

Toggling Transaction StatesToggling Transaction States

● The Good News: By using the built-in routines to
control your transactions, you are overriding the
default transaction state for that OCI server

● The Bad News: By using the built-in routines to
control your transactions, you are overriding the
default transaction state for that OCI server
– Increased overhead due to compilation of command by

database

● In an application that supports both writes and
queries, you must now be certain of your current
transaction state.
– Otherwise the ORA-01456 – attempting to update during a

read only transaction exception might be raised

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 13

JCC Standard for Toggling TransactionsJCC Standard for Toggling Transactions

● JCC develops forms and reports to read all data in read only
transactions, and switch to read write transactions long enough
to do our database writes
– PRE-QUERY trigger (forms)

● Forms_ddl (‘rollback’) – get rid of any implicit transactions that may be
started

● Forms_ddl (‘set transaction read only’);
● Execute the query

– BEFORE-REPORT trigger (reports)
● Srw.do_sql (‘rollback’); -- get rid of any implicit transactions that may be

started

● Srw.do_sql (‘set transaction read only’)

● Execute the query

● NOTE: If Quiet Commit is not enabled, exceptions will be raised

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 14

MultiMulti--Form ApplicationsForm Applications

● In a true Windows style multi-form application, we
don’t know what the user is going to do next
– Could request menu functionality
– Could issue a toolbar command
– Could execute/enter a query
– Etc.

● So how do we control the transactional model?

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 15

MultiMulti--Form Transaction ControlForm Transaction Control

● The JCC methodology for controlling transactions in
a multi-form application is as follows

– Control the transactional model in the following Developer
events

● WHEN-NEW-FORM-INSTANCE trigger

● PRE-QUERY trigger
● POST-QUERY trigger

● KEY-COMMIT trigger

● POST-FORMS-COMMIT
● POST-DATABASE-COMMIT

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 16

WHENWHEN--NEWNEW--FORMFORM--INSTANCEINSTANCE

● This fires once for each new instance of a form
● We want to put the form in a read only transaction

while we wait for instructions from the user

– Example of WHEN-NEW-FORM-INSTANCE trigger

Begin

/* get rid of any implicit / left over transactions */

forms_ddl (‘rollback’);
/* start the read only transaction */

forms_ddl (‘set transaction read only’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 17

PREPRE--QUERYQUERY

● This fires once before the query is sent into the
database

● JCC Rule: Make sure that ALL queries are done in
read only transactions

– Example of PRE-QUERY trigger

Begin
/* get rid of any implicit / left over transactions */
forms_ddl (‘rollback’);
/* start the read only transaction */
forms_ddl (‘set transaction read only’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 18

POSTPOST--QUERYQUERY

● Fires once for each record returned from the
database

● Warning: Developer returns a variable number of
records per block depending on how many are
displayed and how many are buffered in memory
(both properties of the block)
– Could leave a read only transactions open for a long time

● Example: User queries and gets back 5 rows out of the
possible 50 in the database. The transaction was read only
(PRE-QUERY trigger). The user studies the data for 2 hours.
The read only transaction would remain open for that entire
time interval.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 19

POSTPOST--QUERY QUERY
(Continued)(Continued)

● Therefore, since we don’t know (right away) how many rows are
going to be returned, we must end the read only transaction and
start a new one for each row returned from the database
– Number of transactions increases

● Forms displays 20 rows, and buffers 2 in memory, takes 22 read only
transactions to get all the data to the client

– Chance of “stale” transactions greatly reduced
– Example of POST-QUERY trigger

Begin

/* get rid of any implicit / left over transactions */
forms_ddl (‘rollback’);

/* start the read only transaction */

forms_ddl (‘set transaction read only’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 20

KEYKEY--COMMITCOMMIT

● This trigger fires once at the start of the commit process
– This will always be the case if you begin the commit process by

using the built in do_key (‘commit_form’)

● End the read only transaction and start the read write
transaction to commit data

– Example of KEY-COMMIT trigger

Begin

/* get rid of any implicit / left over transactions */

forms_ddl (‘rollback’);
/* start the read write transaction */

forms_ddl (‘set transaction read write’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 21

POSTPOST--FORMSFORMS--COMMITCOMMIT

● Fires once right after the forms process commits
● We want to make sure the read write transaction

(started by the key-commit trigger) is committed to
the database

– Example of POST-FORMS-COMMIT trigger

Begin
/* commit the transaction(s) */

forms_ddl (‘commit’);

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 22

POSTPOST--DATABASEDATABASE--COMMITCOMMIT

● Fires once after the database has successfully
committed the transaction started by the
commit_form process
– In the JCC architecture, this would be the key-commit trigger

● We should start up a read only transaction
– Example of POST-DATABASE-COMMIT trigger

Begin

/* get rid of any implicit the read write was already committed */
forms_ddl (‘rollback’);

/* start the read only transaction */

forms_ddl (‘set transaction read only’);
End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 23

Warning!Warning!
● If you encounter an error during the commit process, JCC

strongly suggests that you rollback your transaction and begin a
read only transaction
– Otherwise, the post-forms-commit trigger will never execute and the

read write transaction will never be ended

● Example:
Begin

insert into ….

Exception when others then
forms_ddl (‘rollback’)
forms_ddl (‘set transaction read only’);
< Tell user about error >

End;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 24

So, What Does All This Mean for MultiSo, What Does All This Mean for Multi--
Form Applications?Form Applications?

● If all this code is added to all your forms:
– All queries would be done in read only transactions
– All writes done in read write transactions

● Implications to this approach
– More transactions
– Higher I/O to database root file

● Much reduced in Rdb 7.0.5 if number of nodes is set to 1

– TANSTAAFL

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 25

Queries in MultiQueries in Multi--Form ApplicationsForm Applications

● So, how does this approach work?
– All queries are translated into cursors with hold through OCI

● This means that queries are open across transactions
– Essence of the post-query trigger

– Start and stop transactions without affecting the currently
open database cursors used to fetch data through OCI

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 26

Queries in MultiQueries in Multi--Form Applications Form Applications
(Continued)(Continued)

● With this approach, if the user doesn’t do anything,
then transactions can remain open for long durations
– Think about the post-query trigger where we set the

transaction state to read only
● If the user simply stares at the data all day, that read only

transaction will remain open

● The user is truly not seeing a snapshot of the data at
the time they issue the query
– Again, the post query trigger stops and starts transactions
– JCC rule, if the user wanted a snapshot of the data, then we

would use Reports to generate a report of what the data
looked like at the time it was requested

– JCC rule, users want to see the most up-to-date data
possible

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 27

Minimizing “Stale” ReadMinimizing “Stale” Read--Only Only
TransactionsTransactions

● Long running transactions are not good
– Read Only Transactions

● Increase snapshot size

● Increase chances of viewing “stale” data

– Read Write Transactions
● Potentially hold locks

● If data has been updated in your transaction, other users
cannot view this data until the transaction has committed

● Can we prevent long running transactions?

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 28

Preventing Long Running TransactionsPreventing Long Running Transactions

● Unfortunately, preventing long running transactions in
a Windows-style environment is nearly impossible
– You never know what the user is going to do next

● Minimizing the potential for long duration transactions
is the best answer
– JCC’s answer

● Use more transactions as opposed to fewer

● Only switch to read write transactions for the time it takes to do
actual insert

● Use timers to check for inactivity

● This by no means covers every possibility. We are still learning
about what the users are doing and altering the transactional
design to compensate for any “wierdnesses”.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 29

Preventing Long Running TransactionsPreventing Long Running Transactions

● Use timers to check for inactivity
– Consider the case where the user stares at one record all

day
● Read only transaction started by post-query trigger

– After “n” number of minutes of inactivity, we should end the
current transaction and start a new one

● If the user isn’t doing anything on the screen, they probably left
for the day

● Shouldn’t hold any locks

● Shouldn’t do anything to the screen
– Auto logout is very frustrating

– Consider using the WHEN-TIMER-EXPIRED trigger while
also calling the Windows API to check for screen inactivity

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 30

WHENWHEN--TIMERTIMER--EXPIREDEXPIRED

● This trigger fires once each time a client side timer
expires
– Use create timer to start a client side timer

● Do this in the POST-QUERY trigger

– When the timer expires, the trigger will fire
● Rollback the existing read only transaction and start a new one

– Note, PL/SQL is single threaded. This trigger cannot fire
during the commit process. Therefore, we can never lose
data.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 31

Calling The Windows APICalling The Windows API

● JCC actually uses D2KUWTIL (Oracle package for
Developer) that contains routines to reference the
operating system
– Win_API_Session.Timeout_get_inactive_time

● This call uses the operating system to determine the amount of
inactive time for the calling window (Developer)

● We check for inactivity for 5 minutes.
– No transactions will remain open for longer than the 5 minute

active timeout
– Implication: If the user continues to look at the same data

and the screen is active, this approach will fail

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 32

WHENWHEN--TIMERTIMER--EXPIRED ExampleEXPIRED Example

Declare

hWind PLS_INTEGER;

CheckTimer Timer;

Begin

/* timeout every 5 minutes */

if Win_API_Session.Timeout_get_inactive_time > 5 then

forms_ddl (‘rollback’);

forms_ddl (‘set transaction read only’);

/* Delete the current timer, both API and FORMS */

Win_API_Session.timeout_delete_timer;

delete_timer(‘CHECK_TIMEOUT_TIMER’);

/* Start a new timer to catch next timeout */

hWind := get_window_property(FORMS_MDI_WINDOW,WINDOW_HANDLE);

Win_API_Session.Timeout_Start_Timer(hWind);

default_value('1000','global.timeout_check_interval');

/* Create FORMS timer to check for inactive timeout */

CheckTimer := Create_Timer('CHECK_IIMEOUT_TIMER',1,repeat);

end if;

end;

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 33

WHENWHEN--TIMERTIMER--EXPIRED TriggerEXPIRED Trigger

● Warning: After the timer expires be sure to start
another timer or else you will have one timeout and
then a long running read only transaction

● Implications:
– You’ll rack up transactions – TANSTAAFL

● In previous example, 1 Read Only transaction per 5 minutes
per user

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 34

How To Implement The Transactional How To Implement The Transactional
Model in DeveloperModel in Developer

● Writing all the specific code in each form to maintain
the transaction context would be overwhelming
– If a change needed to be made to the 5 triggers to maintain in

300 forms, I’d give up (1500 + code changes)
● Good Luck Testing

● Is there a way to “write it once and forget it”?
– Yes.

● Property Classes

● Object Libraries

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 35

Property ClassesProperty Classes

● Property Classes are groups of Developer properties that can
be applied to all objects of the same characteristics.
– Similar to Rdb Domains

– Examples
● Date fields

● Username fields

● Money fields
● Etc

– Application of property classes is done through inheritance
● Each object inherits all the properties of the applied property class

● Property classes can contain
– Format Masks

– Fonts Sizes/Weight/etc
– Client-side triggers

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 36

Object LibrariesObject Libraries

● Object Libraries are nothing more than a collection of
objects
– Blocks
– Canvases
– PL/SQL program units
– Property Classes

● JCC recommends
– Placing all the property classes into Object Libraries
– All forms should inherit the property classes from the object

library
– All (most) objects should be associated with a property class

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 37

Implementing the Transactional ModelImplementing the Transactional Model

● JCC has applied these transactional routines to Object Libraries
via property classes
– Single point of coding inherited to all forms via Property Classes

– If a change needs to be made, alter the object and upon
recompilation all forms receive the updated code

– Allows for consistency in the application
● Each form does the same thing

● In other words, to make a change to hundreds of forms, alter the
parent objects which will propagate the changes to all children
forms.
– Therefore, if 5 triggers needed updated in 300 forms, we would

have 5 updates
● Recompile all the forms modules and the inheritance will pull in new

PL/SQL code

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 38

Automatic Deadlock ControlAutomatic Deadlock Control

● Detection of Rdb Deadlocks can be done by trapping
the exception message thrown by Rdb on an
insert/update and searching the message for the
word deadlock
– JCC recommends writing all inserts/updates in procedures

and client triggers
● Override Developer defaults for writing to the database
● More coding = Better control of application

– The extra 15 minutes it takes to write the code is worth it

● If the exception contains the word deadlock, assume
that a deadlock occurred, rollback and attempt to
save the transaction again

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 39

Deadlock Code ExampleDeadlock Code Example

● Example: (forms)
Declare

my_error_text varchar2 (2000);

pos number;

Begin

<insert/update statement>

Exception when others then

forms_ddl (‘rollback’);

/* DBMS_ERROR_TEXT is built in that returns the error from the database
engine */

my_error_text:=SQLERRM ||‘ ‘|| DBMS_ERROR_CODE ||’-’|| DBMS_ERROR_TEXT ;

pos := instr (upper(my_error_text), ‘DEADLOCK’);

if pos > 0

then

-- Deadlock found, re-save

do_key (‘commit_form’);

else

-- Deadlock not found, stop processing

raise form_trigger_failure;

end if;

End

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 40

Automatic Deadlock ImplicationsAutomatic Deadlock Implications

● Applications should expect deadlocks
– This method traps the error from the user

● Limit the number of auto-retries on deadlock
processing
– You don’t want application to go into an infinite loop

● The deadlock error messages can still show in the
log files, yet be hidden from the user.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 41

ConclusionsConclusions

● It is possible to manage the transactions for
Developer against Rdb
– Leverage and understand Developer’s trigger topology to

utilize FORMS_DDL and SRW.DO_SQL
– Leverage the power of Rdb by understanding the database’s

transactional model

● Use Object Libraries/Property Classes to encapsulate
the logic of your application and inherit this
functionality in your detail forms

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 42

For More Information…For More Information…
Developer and Rdb Seminar DatesDeveloper and Rdb Seminar Dates

● October 16-20, 2000 -- Sold Out
● January 22-26, 2001 -- Openings still available

● The 5 day seminar starts with forms basics and
proceeds to object oriented design while including
many tips and tricks for leveraging Rdb
– Topics include:

● Transactional control
● Calling Stored Procedures/Functions

● Error/Exception handling

● Object Libraries, Property Classes and Object Groups
● Etc.

Copyright 2000, JCC Consulting, Inc., All rights reserved.
Confidential and proprietary to JCC Consulting, Inc. 43

QuestionsQuestions

Jeffh@jcc.com

Any further comments or questions…

